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PRESSURE WAVES GENERATED BY ADDITION

OF HEAT IN A GASEOUS MEDIUM

By’Boa-Teh C!’hl

SUMMARY

formula of a linearized solution for the pressure
mcderate rate of heat release is given. The anal-

The approximate
field generated by a
ogies between the pressme waves generated by heat release and those
generated by (1) mass release, (2] piston motion, or (3) a two-dimensional
body in a supersonic stresm sxe established analytically. The exact
solution of a idealized problem in which a finite smount of heat is
released uniformly’at a section of a tube with a given rate, large or
small, is also constructed. Though this ided.ized setup can be only

. approximately fulfilled in practice, the analysis does give an answer
to a fundamental question: Given the rate of heat release at a section
of a tube, how strong is the shock wave generated? A simihr snalYsis

. is made for the pressure waves generated by a point source in three
dimensions. Scxueapplications of the theory sre given.

INTRODUCTION

One of the basic problems in conibustionaerdymmics is: What are
the dynamic effects produced in a medium as a result of heat release in
the medium? In particular, huw strong are the pressure waves generated
by heat release and to what extent are they,important in a specific
proUem? Such questions arise naturally in the study of the spreading
of autoignition, the transient development of detonation wave, ignition
by compression, and many other time-dependent problems. The problem of
estimating the pressure generated by heat release also occurs in other
fields, for example, in the study of spark discharge and thermally driven
acoustical oscillation as well as of the mechanical effects (%last”)
produced in an atomic explosion (ref. 1).

The basic mechanismby which pressure waves are producedby heat
addition is simply this: When heat is added to a volume of gas, the
density of the gas is, in general, reduced. This causes an expansion

6 of the volume occupied by the heated gas. The expansion of this volume.’
produces the pressure waves.

.
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To see this in a more quantitative manner, it is necessary to write
down the fundamental equations governing the motion of the gas. Let

p, p, T, and $ be, respectively, the pressure, densiky, temperature
and veloci~ vector of the flow, all being soresfunctions of the position

vector ~ and time t. Let R and ~ be the gas constant and specific
heat at constant volume of the gas, both of which wiKLbe assumed constant
in this preliminary study. The equations of continuity, momentum, and
energy are

~QQ+v.a=o
f2Dt

(la)

(lb)

(lC)

where ~
()represents the Stokes* derivative and q ~,t is the rate

Dt
of heat release per unit mass of the medium at % and at the instant t.
When heat is added into the medium from an external source, q may be
considered as given and equations (la), (lb), end (lc) together with the
equation of state

P= w (Id)

form a system of four equations which govern the four unlumwns p, p,

T,

of

and. R

Now it is observed that the rate of expansion of a given volume v

rgas considered as a free body is measured by ~ . 2 ds where s is
‘s

the boundi~ surface of the volume and ~ is the
Hence, by G&ss ‘ theorem, it is also equal to

r V.i?dv
‘v

It then follows immediately from

(
there is a change of density $

volume. Now, when heat is added

outwsxd-drawn normal.

continuity equation (la) that whenever
DQ) there will be a change of the
Dt
to the medium, there will, in general,

.

u
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be a change of pressure and density
tion (lc). (The relative amount of
resulting from heat addition can in

3

in accordance with energy equa-
pressure change and density change
principle always be determined in

any spec~fic problem by solving equations (1) jointly.) The change in
density prduces a change in volume occupied by the heated gas, which
in turn generates the pressure waves.

It shouldbe remarked that when heat is not added into the medium
from external sources but is released by the fluid psrticles themselves
the rate of heat release q must be considered as unknown and an addi-
tional equation is required to describe its variation. In combustion,
q is usually given as a function of the local temperature. In other
cases, the rate of heat release of the fluid particles is specified.
In any event, the system of equations (1) will thenbe considerably
more complicated than it appears to be.

<)Finally, one notes that the term ~ 10 ~ in equation (lc) is
P7

directly related to the entropy of the gas by the-formula

so k)( )]p.Y
s- =cvlo&2T

Po

where the subscript o denotes some reference state and S is the
entropy of the gas.

(2)

For a moderate rate of heat release, the system of eqyations (1)
can be linearized. The linearized theory is given in the following
section where a “reduction theorem” is derived which enables one to
reduce the problem-of heat release in a tube to an equivalent problem
of piston motion. An application of this reduction theorem to the
one-dimensional case is given in the section entitled “APPLICATION OF
REDUCTION ‘TBXOREM.” When the rate of heat release is high, the
linearized theory is no longer valid. b the section entitled “EXACT
SOLUTION,” an exact solution is obtained for the case when heat is
released uniformly at a section of the tube at a constant rate (large
or small.). The corresponding problem in three dimensions is given in
the section entitled “THREE-DIMENSIONALTHEORY.” Sane applications of
the theory are also given.

The present investigation was conducted at the Department of Aero-
nautics of The Johns Hopkins University under the sponsorship and with
the financial assistance of the National Advisory Committee for Aero-
nautics. The author is greatly indebted to Drs. FYaneis H. Clau8er and
Leslie S. G. Kov&sznay for a few stimulating discussions and for their
encouragement and to Dr. M. V. Morkovin for his interest and comments.
The author would 13ke to acknowledge his gratitude to Dr. Harold MireI-s
of the NACA Lewis Flight Propulsion Laboratory who made several most



4 NACA TN 3411

interesting suggestions. He is also grateful to Miss Ingeborg Busemann
who carried out some of the calculations and to MLss Vivian O’Brien and
Mrs. Sture Kkrlsson for their assistance in the preparation of the
manuscript.

SYMBOIS

A

a

~v?Cp

Q

cross-sectional area of

veloci~ of sound

a tube

specific heats at constant volume and constant pressure,
respectively

energy per unit volume

some arbitrary functions

step function

a characteristic length

Mach number

mass injected per unit volume per unit time

normal to a control surface

pressure

rate of heat release, energy/see

constant rate of heat release (eqs. (46))

heating value of a mixture, energy/mass

rate of heat

gas constant

release per unit mass, energy/mass/see

of a mixture

radial distance

distance between field point and source point .

.
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radius vector

radius of contact surface

radius of spherical shock

entropy

wave

transformation velocity (i.e., flame speed)

bounding surface of

temperature

temperature tending
* = Constarlt

time

volume v

-to . in such manner that

superficial velocity of a piston (see eq. (15))

veloci~ (in one-dimensional case)

velocity vector

velocity of contact surface

radial velocity (in three-dimensional case)

velocity of flow immediately behiti shock

veloci~ of propagation of shock wave

volume enclosed by control surface

Cartesian coordinate of a point

rate constant in parabolic heat-release law, equa-
tion (47), en&gy/sec3
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u.)

%

CIJ(y,z,t)

Subscripts:

c

o

1

2

increment of or change of

b-function in one dimension

&function in three dimensions

any number, value of x

vector normal to side of tube

coordinates of source point

density

density tending to zero in such a manner that
w’ Constant .

rate of heat release per unit area, energy/area/see

constant rate of heat release per unit area (eq. (20))

rate of heat release at x = ~, energy/area/see

state at contact surface

undisturbed state (i.e., that ahead of shock wave)
except in case of variables representing rate of
heat release o and Q (see list of main swboh)

state immediately behind
that immediately ahead
dimensional case)

state immediately behind

shock wave (which is also
of flame front in one-

flame front

IJmmcmD THEORY AND SOME ANAmGIEs

“. —

—

.

C!onsidera medium in a uniform state with presswe PO} densitY PO}

and temperature To. After the heat is added, the pressure, densim,

temperature, and velocity induced canbe written as

.

.
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P =po+t5p (3a)

P =po+bp (3b)

T= To + 5T (3C)

+
u= 82 (3d)

If the rate of heat release is not too high,
5P 5P 5T ad Id
E’gr’ —<<l!30

where a. is the speed of sound in the undisturbed medium. Equations (1)

can then be linearized and

r)iL@+ao2v -&=0
&

()

(4a)

(kb)

,#2E!._). qEE) .* (4C)

ELbninaix bP/Po from equations (ka) and (kc):

a bp

(J

q——
at 7P

i.v.82=—
Cpto

(4d)

(5)

The equations governing-the pressure @d velocity fields are then given
by equations (Lb) and (5). Once the pressure field is known, the density
and temperature field can be determined from equations (4c) and (ltd)and
the entropy spottiness from the linearized form of equation (2),

.
It is now clear that “moderate rate cd heat release” means —<<1

~Z~ao

where. L is sane characteristic length in the problem, for example, a
length characterizing the dimension of the heating zone.
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It is interesting to note that as fsr as the pressure and velocity
fields are concerned, the governing eqpations (eqs. (5) and (4b)) are of
the same form - in the lineariz~ approximation - as those which govern
the pressure end velocity fields producedby injecting fluid (isen-
tropicslly) into the medhn. For, in the latter case, the momentum
equation in the linearized form is the sane as equation (4b) while the
linesri.zedcontinuity equation is givenby

a p ~v.53=u—— did
at n Po (7)

where m is the rate at which fluid (measured b mass/volume/second)
is introduced into the medium. In fact, all one has to do to get the
same pressure and veloci~ fields for the two cases is to match the
parsmeter q/CpTo with m/po. This suggests that the noise generated

in a nonuniform combustion (e.g., in turbulent combustion) will radiate
as a source field when exsndned at a large distsnce awsy from the com-
bustion region. (It is not known if any experiment has been carried
out in the study of this phenomena.)

—

If d is eliminated from equations (5) and (4b) the pressure field .
is found to satisfy the wave equation

(8) -

It is clear from equation (8) that the pressure produced by heat addition
depends upon the rate of heat release, and whenever there is a change of
rate of heat release there will be pressure waves generated, a fact which ‘
one should have expected in the first place.

Now consider the gases contained in a tube. The x-axis wiube
chosen parallel to the axis of the tube. The heat added to the
medium q(x,y,z,t) is assumed to be given for t > 0. For t SO,
q(x,y,z,t) is assumed to he identically zero. Now since

q(x,y,z,t) = J( q ?)Y>zjt) 5(X- E) U (9)‘
-m

and equation (8) is linear (so that the superposition principle is valid),
it is clearly sufficient to analyze the effect of heat release when

q(x,y,z,t) = *u(Yyzyt) 5(X - E), that is, when heat is added onlyat
.

the section x = g. The quantim u(y,z,t) has a physical meaning of
its own. 1% is the heat generated per unit area per unit time at the
section x = ~, for .
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.

.

J d,,z,t) W d. = Total heat generated at x = 5 in unit time

where the integration is taken over the cross section of the tube at
x E. Mathematically, this amounts to finding the elementary solution
of=equation (8), for once the pressure field praluced by w(y,z,t) at
x = ~ is known, the general case of heat release by arbitrarily distrib-
uted sources q(x,y,z,t) can be obtained by replacing the tezzu u(y,z,t)
in the formulas found for the pressure and velocity field with
poq(~jy~z}t) d~ and integrating them from ~ = -W to m.

By a translation of the coordinate axes the plane at which heat is
added csnbe made to be the plane x = O. The pressure field produced
by heat released at the plane x = O will then satisfy the differential
equation

and the boundary condition

. aPo

r)
——=
& no

(lo)

(11)

at the wall of the tube. (Here ~ stands for the norm&l vector to the
side of the tube.) Equation (n), according to equation (4b), is an
equivalent statement of the requirement that there should be no flow
across the wall of the tube. If it is further assumed that initial=
att= O there are no disturbances inside the tube, there are also
the initial conditions

The solution of the above
%eduction theoremt’given

[r]aP—— 0
at no ~=

(3.2a)

(K%)

pro%lem can be facilitated with the aid of the
below.

.

.
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Reducticm Theorem .

Let heat be released at a section x = O of a tube of constant
cross section and of infinitk length at a rate of m(y,z,t) units of
ener~ per unit area per unit time. The pressure and velocity fields
generated as a result of this heat release are identical to those pro-
duced by two pistons at x = ti moving away from each other (along the

axis of the tube) with the seinesuperficial velocity * M.
Po

In this manner, the problem of pressure waves generated by heat
release is reduced to a problem of piston motion. This reduction
enables one to make use of the result of known theories (e.g., ref. 2)
for the problemat hand. It is possible to generalize the theorem to
a tube of, for example, finite length. This will be discussed later.
The proof of the r-uction theorem is very similar to that used in
deriving the %bnpulse methd” of solving a nonlmuogeneous wave equation.
(See, e.g., ref. 3.)

.
—

--

Proof of Reduction Theorem

First of all, observe that every solution of equation (10) willbe
a solution of the homogeneous wave equation at all points except x = 0,
since 5(X) =0 for x+O. Next performan integration of equation (10)
with respect to x from -e to E and then let e+O. m it is

a condition which can certainly be satisfied if u(y,z,t) is a function
smooth enough in y, z, and t, equation (10) bectis

By s-try, 5p/~. is an even function of x so that it

to consider the pressure field

written simply as

in the region x> O only.

(13)

is sufficient

&kO, by

bp

–)
so that equation (13) can be

Do ~~

a 5P() [la7- 1 NY>z2t)—— -—— —

ax~o ~=w = 2a02at 7 ‘O 1
(i~a) .

.
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?

In other words, if bp no

{

is a solution of equation (10), it must also
satisfy condition (13a as x+Ot. Consequently, the solution 5p/~.
of equation (10) satisfying conditions (11) and (E) must satisfy the
homogeneous wave equation

(14)

for x>O as well as conditions (11), (12), and (13a). But the
pressure field in the region x > 0 produced by a.piston at x = &
moving with a superficial veloci@

1 U(y,z,t)
U(y,z,t) =~

27 Po
(EJ

in the x-direction will precisely satisfy equations (11), (U), (13a),
and (14) for x > 0.l Moreover, since the pressure field generated by
a moving piston is uniquely determined in the linearized theory, it is
also the only solution which satisfies equations (11), (12), (13a), and
(14). Consequently, the pressure field generated by heat release and
piston motion must be identical. The velocity prduced by heat release
and by piston motion are also identical for x > 0, since in both cases
the veloci~ and pressure are relatedby formula (4b) @

aQ&+v. &=o-()at YPO

in this region. (Cf. eq. (5) and observe that q(x,y,z,t) =

1 u(y,z,t)b(x) and b(x) = O for x # O. Hence
g
This ccmpletes the proof of the reduction theorem.

It is clear from the above proof that the same
hold for tubes with nonuniform cross sections which
about the plane x = O. It also holds for tubes of

q =0 for x#O.)

conclusirm till
are symmetrical
uniform section of

finite length provided that it is limited to the region ahead of the
wave front reflected from the end of the tube. For the most general
case, in which no such restrictions sxe imposed, a similar but less
simple analogy can be constructed. In this case the two pistons till
be moving with different velocities, and they are so related that not

bat it satisfies equation (13a) follows from the momentum
equation in the x-direction (eq. (kb)), the boundary condition that
there should be no flow crossing the face of the piston, and equa-
tion (15).
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only is equation (13)

(%)=@ = (%)=O.

direct consequence of

NACA TN ~11

satisfied but also the condition

is fulfilled. (The equali~ of pressure is a

momentum balance at the section x = O when all

.

the second-order terms are neglected.) W the next section, applica-
tion of this reduction theorem will be given.

The reduction theorem was originally formuhted as a means of
reducing a problem of heat addition to a problem of piston motion.
However, the fictitious pistons described in the theorem actually have
a real physical significance. It has been shown in the introduction
that when heat conduction is neglected the flow field resulting from
heat addition into a medium is really caused by the volumetric expansion
of the hot gas resulting from the heating. In the case of heat addition
at one plane (s~, x = O), the rate of this expansion can be calculated.
In fact, the faces of the two fictitious pistons must be precisely the
two interfaces which separate the cool gas from the heated gas, since
they start from x = CM at t = O and move out with a speed equal to
the speed of the fluid particle. --

Dr. Harold Mh?els pointed out that the reduction theorem states
that the pressure.and veloci~ fields produced %y addition of u units .

of energy pr unit time per unit area are equivalent to those produced
by two pistons at x = Ok moving away from each other with velocity v

6u=Z&!&

However, the rate of work done by such pistons iS 2p05u
7-1

=—u,

1
7

whereas the heat input is u. Thus there are -u
7

units of energy

apparently unaccounted for. He went on to say that this is due to the
step-functionbehavior of mass amd energy at x = O (as cam be deduced -
for the particular case discussed in the next section from equations (22)
to (2k)).

A more direct physical explanation of the energy that appears
“unaccounted for’!is the following. The u units of heat energy per
unit area per unit time added can be divided into two parts: That

[

esponsible for the setting up of the pressure and velocity fields
which, according to the reduction theorem, must be equal to

2p05u =
)

*U , and that responsible for heatingup the medium. On

the other hand, in the case of the flow field prmluced by the piston
motion, all the energy goes into the setting up of the pressure and

r

veloci~ fields. The amount of energy that was previously unaccounted
.

.
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. for must then be the thermal energy stored in the hot gas. This can
be seen from the following calculation. From the reduction theorem,
it is concluded that the flow fields produced by heating and piston

●

motion are identical up to the faces of the pistons. In the case of
heat addition, the hot gas filled the space between the faces of the
two fictitious pistons. h a time interval bt, the increase in volume
of the hot gas is 2A5u&b, where A is the cross-sectional area of the
tube. The internal energy stored in the hot gas is increased (during
the same interval) by ~tit(po

~A5u5t(po + 5P), or, to the

s~~ by ~ po~fiti. Hence

ener~ stored in the hot gas per

—
+ 5p)~(To +-CY12),that is, by-

order of the linearized approximation,

the rate of increase in the internal

unit cross-sectional area at any instant

- % which is exactly equal tot is +po&l =
Y- 5’0(%%) ,’

the amount of energy that appears unaccounted for if only the flow field
prduced by the fictitious pistons is examined. (The above calculation
is made for the case m = Constant across the cross-sectional area of
the tube. For the more general case a = co(y, z}t)j the same calculation

r
applies except that one should write the integral . . . dA instead

J
of A in the calculation.)

.
b the linearized theory presented here, only the effect of com-

pressibility has been taken into account and the effect of heat conduc-
tion has been neglected completely. Linearized theory taking heat
conductivi~ into account was recently investigated by Wu (ref. 4).

APPIZCNION OF REDUCTION TKEOREM

As an application of the reduction theorem, consider the case
where

U)(y,z,t) = CD(t) (16)

that is, the case in which heat is uniformly released at the plane x = O.
According to the reduction theorem, the pressure and veloci@ fields
induced are the same as those generated by two pistons at x = (M moving
away from each other with velocities

*Y - 1 a(t)
u(t) = ——

27 Po
(17)
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respectively. ~ the tube containing the
section, the pressure and veloci@ fields
be one &ensional, and they are given

z=,-.+”%)
7P0 27 &Go

()
ult+~

5p 7-1 a.—=—
no 27 s@o

tiu=x+”e)
27

bLl=-
,-1”;+%)
27 PC)

by

NAC!ATN 3411

gas is of constant cross
prrxiucedby the pistons will
~he well-k%m

for X>o

for x<O

for x>O

for x<O

f&mulas

(18.s)

(mb)

(19a)

(lgb)

,

In particular, if the rate of heat release is constant for t >0,
that is,

.

{

o
u(t) =

%

for t<O.
=

}

(20) .
for t>O

or, written in terms of the step function, u(t) = ~(t), the pressure
field is given by

bp -~Ht-&
%= 27 ()

for x>O (21a)
%@o a.

5p_7-l%Ht+x——
no 27 %@o () ~

for X<o (!2N3)

This shows that, when heat is released at a constant rate of ~ units

of energy per unit area per unit time into the medium, two compression
waves of equal strength are generated and propagate away from the heating
zone. These compression waves have a strength, measured in terms of the
ratio of pressure jump bp across the wave to the undisturbed pres-

sure Poj equal to q %. It is thus seen that the strength of
a$o

the pressure waves produced by heat addition to the medium is usually
small.

(
Thus, if ~ = 10 Btu per square foot per second,

.
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then

rate
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1,000 feet per second, and P. = 2,0Ml pounds per square

5p_ 02x 10 X 778

Po “ 1,000 x 2,030 =
778 X 10-6 = 0.078 percent.

)

15

foot,

When the

of heat release is high, the pressure waves generated maY be quite
intense. Huwever, for a v~~ hi@-rate of heat r;lease the above ~ormulas
can no longer be used. ~ fact, the formula is correct only if the mn-

dhensional heat-release parameter %—<< 1, since it is based on aaopo

linearized theory. However, the simplicity of the pressure and velocity
field predicted from the linearized theory in the last instance leads
one to suspect that an exact solution can be found by replacing the
infinitesimal pressure steps by two shock waves. The main problem is
again to determine the strength of the shock wave, given the rate of
heat release %/wo “ This problem wilJ be considered In the next
section.

It is seen from equations (18) and (19) that the pressure is con-
tinuous at x = O, but the veloci~ is discontinuous there, since

7 -1 u(t)
(5U)=0- = 27. w

The fact that the flow is leaving the section x = O at both x = 0+
andx=O- leads one to inquire if all the conservation theorems are
really satisfied at x = O. (It is certainly obvious that they are
satisfied at all values of x # O.)

It will now be shown that,these laws are indeed satisfied at x = O.
For this purpose it is necessary to calculate the density and temper-
ature field. Integrating equation (kc) with respect to t,
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By equation (kd), .

-.

●

Consider a control surface formed by the @anes x = e, x = -e (where
e may be any number, large or small), and the segment of wall ‘of the
tube between these planes. Let A be the cross-sectional area of the
tube. The conservation of mass and energy can be expressed as

(24a)

—

(24b) F

Substituting equations (3), (18), and (19) into the above equations and
neglecting the second-order small quantities (in accordance with the

—

linearized approximation), it is found that equations (24) are indeed
satisfied for all values of e. (By reason of symmetry of the flow field
with respect to x = O, the mamenturnequation formulated for the same
control surface is automatically satisfied.) H e is taken as an
arbitrarily small number, this establishes the validity of the conserva-
tion laws at x =–O. If ~ is chosen large enough to enclose the whole - -
disturbed field, it establishes the validity of the over-all.conservation
laws for the system. Note that these conservation laws will not be
satisfied if the pressure and velocity fields are related to the rate of
heat release w in any other manner than by equations (18) and (19).

There are two aspects of this analysis which deserve some criticism.
First of all, it is clear from equation (23) that, in general, bT/To
is infinite at x = O. This is, in fact, a direct consequence of the
additicn of a finite amount of heat in a plane. Since a “plane of gas”
(instead of a volume) possesses no heat capacity, the temperature must ~
become infinite. Now, if &!J/To is infinite, the linearizationmust

break down at x = O so that the solution really does not represent any
.
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physical state of affairs at x = O. Secondly, the densi~ 5p/~,
according to equation (22), becomes a at x=O. Here there is not
only an infinity but also a negative density which is not even physi-
calJ.yconceivable. It will be seen in the next section that the nega-
tive densi~ is really a consequence of linearization.

Despite the absurdity of the behavior of the solution at x = 0,2
all the other conclusions derived above, such as the dependence of the
strength of the pressure wave on the rate of heat release (eq. (21)) are
to be trusted because only this dependence will insure the conservation
of energy, mass, and momentum loca

Y
at all points as well as for the

whole system (i.e., aver-all balance . This state of affairs will be
clarified when an exact solution is constructed in the next section.

Other evidence which indirectly Justifies the value of this solution
is found when use is made of the above solution to get the pressure and
velocity fields produced by heat sources q(x,t) which are not distrib-
uted in one plsme but aver a region (volume) of the tube. According to the
rule given (see eq. (9) and the paragraph follo~ it)y it is necess~
only to repkce x in formulas (18), (19), (22), and (23) by x - 3
(i.e., perform a translation) and then replace the function o in these
formtis by poq(~,t) d~, and, finally, integrate g from -w to a.

.
Thus, the pressure field is given by

which is well lmown as the correct solution of the one-dimensional-wave
equation

subjected to the

— —

%!o be sure, to begin with, it is physically impossible to add a
finite smount of heat in a plane (instead of a volume) of gas. However,
this is beside the point because this state of affairs can at least be
approximated in practice.



18

Ii&wise, the veloci~, density, and

l?ACATN 3411

temperature fields are given by -

d~ (26) ‘

——

-1t q(x ‘) dt

~ C@. (27)
—

~
ELz=z_&2 x +,t -y)
% x-sot C#o

. .—

[
t q(x,t)
— dt

nm
(28) -’

‘x
~xo

J do @“L. —

Note that in the expressions for the temperature (eq. (28)) and density
.

(eq. (27)) the “infinities,”which were original~ contained in expres-
—

sions (22) and (23), disappear after superposition. .-

To get some idea as to the pressure and velocity distributions inside
a narrow (but nonzero) band of heating zone, a calculation is made for
the case

fo for t~O; also for t >0 if II‘>s,.
q(x.,t)=

t
% for t>O and x<=

where E is some small number. !!l?ypi calpressureand
tions for various times are shown in figure 1.

The solid lines in figure.1 are the pressuxe and
tions. The dotted lines are the construction lines.
do not realize the heating zone is cut off at x = ?x
extends from -w to ~. By symmetry, therefore, the
to move toward neither the left nor the right. Hence

veloci~ distribu-

velocity distribu-
Points between aa’
and think that it
fluid particle tends ‘
in this region

5U = O, and the density, by the continuity equation, remains unchanged, ●

while the pressure increases linearly with the temperature (constant-
volume combustion). Points between ab do realize that the heating zone -

.
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is cut off at x
The pressure and
on how much each

19

= E but do not know if it is also cut off at x = -e.
velocity differ at different points in ab depending
point knows about the conditions at each side of the

pcht x = e. !RI_6ssme remarks hold for points between atbt.

Before concluding the discussion of the red~ction theorem, one
should mention that when heat is released uniformly at one plane, that
is, u(y,z,t) = u(t), it is possible to construct a third analogy,
namely, that between the pressure waves generated by heat release and a
two-dimensional airfoil in supersonic flow.3 For the reduction theorem
shows that the pressure field produced by heat release satisfies the
system of equations (14), (13), (12a), and (l&%)j which in the present
case become

On the other hand,
in a uniform supersonic
pressure field
equations:

prcduced

[(qap=o——
at ZPO *O

o (29a)

1Q&l
Po

(a)

(29c)

(2gd)

if a ssnmnetricaltwo-dimensional airfoil Y = *f(x)

stream
by the

of Mach
airfoil

1

%2-1

number M is considered, the
satisfies the fo~owing set of

ap~=o
(vp YPO (304

(30b)

3- author is indebted to ~. L. S. G. Kov6znay fOr sUggeSt@

this analogy in the early stage of this analysis.

.
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(30C) -

●

(According to the momentum equation in the y-direction eq. (30b) is
equivalent to the statement that the flow at the surface of the airfoil
must be tangent to the airfoil. The last two conditions are equivalent
to the statement that there should be no inccming waves in the flow
field.)

A comparison of equations (29) and (30) shows that there exists sm
analo~ between the pressure field developed by the uniform heat addi-
tion at a plane and the two-dimensional symmetrical airfoil in a super-
sonic stream. In fact; it is necessary only to imgine the time coordin-
ate as the space coordinate in the dtrection of the supersonic stream

and choose % =.1 + ~ and the shape of the aigfoil according to thea02

formula f(x) s+ 1 U)(x)

1 + ao2 ~“

EXACT SOLUTION

Let heat be uniformly released at the section x = O of a tube of
constant cross section and of infinite length at a constsmt rate of ~
units of energy per unit area per unit time. (Hence, if the total heat
released per second is Q and the cross-sectionalarea of the tube is A,
~ = Q/A.) When the nondimensional heat-release parameter wo/a@o was

small compared with unity, two compression waves of strength Z&%
a~o>

propagating away from each other with the velocity of sound a. of the

undisturbed medium, were found to be generated at x = O (see e~~~) .
When ~/a&. is not small, equation (21) is no longer valid.

more, it is expected that, instead of the two infinitesimal pressure
steps, two shock waves would be generated. M question is again to
determine the strength of the shock wave generated, given the rate of
heat release per unit area ~.

—

—

..

.

.
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The linearized solution (21), though invalid for a high rate of
release,’does suggest the following propositions:

(1) The ‘shockwaves generated at x = O are of equal strength and
maintain their strength as they propagate away from each other.

(2) The pressure between the two shock waves is uniform and equal
to the pressure immediately behind the shocks.

(3) The velocity field behind the shock waves is discontinuous at
x= 0 ad is an odd function of x. It is uniform for the regions x >0
and x < 0, respectively, and assumes the value of the velocity of the
gas immediately behind the shock in the region x >0 and x < 0, -
respectively.

Ih addition to these propositions, due account will be taken of the
motion of the fluid particles which is neglected in the linearized theory.
It would be expected that:

(4) Two contact surfaces which form the boundaries separating the
hot and cool gas are generakd at x = O at the instant when heat is
first added to the medium and move away from each other with the velocity
of the fhid particles.

(5) Since the hot gas originated from a single plane x = O, the
temperature of the gas between the two contact surfaces must tend to
infini&.

(6) For tie same re=on, the density of the hot gas between the two
contact surfaces must tend to zero in such a ~er that pT = Consts&
in accordance with the gas law pT = p/R and proposition (2).

These propositions can be substantiated by a formal argument based
on dimensional reasoning. The argument g-s as follows: The undisturbed
medium csm be characterized by two of its tiermodynamic state parameters,
say, the pressure p. and temperature To. Since the velocity of

sound a. in the undisturbed medium is uniquely related to the temper-

ature To, PO and a. will be used as the two parameters characterizing

the undisturbed medium. The strength of the shock wave can be described
in terms of the pressure ratio pl/po across the shock, where pl is

the pressure immediately behind the shock. Zt is clear that, in general,
the strength of me shock wave depends on the rate of heat release per
unit area ~, tbs state of the undisturbed medium being characterized

by P. and a. as welJ as by the time t. That is,

(3m
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Since the viscous and heat-conductive effects have leen neglected in .

this preliminary study, these vaiiables do not enter into equation (31a).
Also, for uniform heat release in a tube of constant cross section the
flow field is one-dimensional so that the dimension of the tube does not

--

enter into the problem as a relevant characteristic length. Now equa-
tion (31a) must be dimensionally”correct. Ikitthe four variables ~,

—

Po> ao, and t can only be ccmibine”dinto a single nondimensional param-

eter, namely, %— which does not containa$o> the variable t. Consequently,

(31b)

that is, the shock strength must be independent of the time t, which
proves proposition (l). Clearly this conclusion is actually a direct
consequence of the fact that there is neither a characteristic time nor
a relevant characteristic length In the problem.

likewise, the pressure, density, temperature, and velocity of the
flow behind the shock waves will be functions of ~, ao, po, and t.

In addition, they can be functions of the position x. The five vari-
ables ~, aoy Poy x, and t can be ccmbined to give two independent

nondimensional parsa&ers, namely, & and ~-. Therefore,
. 0

p(x,t)

(
=F2 &,&

Po aot)

ti+? (3a& x

ao )‘q

(32a)

.
-..

and so forth. Ih other words, the flow field must be “conical.” fitro.

ducing a new independent variable ~ = ~, it is a simple matter to
aot

reduce the governing partial differential equations (i.e., the continuity,
momentum, and energy equations) to a system of ordinary differential
equations with the independent variable ~. It turns out that this
system can be integrated without difficul~ so that explicit solutions
are obtained for the pressure, velocity, temperature, and density fields.
The constants of integration are to be determined fran the boundary
conditions at the shock. However, a simpler approach is to assume a
possible flow field which embodies all t~e features in propositions (1)
to (6) and then to verify that it indeed satisfies all the conservation .

laws at all points.

.
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For the purpose of formulation, suppose for the time being that the
strength of the shock waves is known. Then the pressure pl, velocity ul.
temperature ~, ~d density ~ immediately

known. Since the shock strength is invariant

and ~ will also be independent of time and

To satisfy proposition (2), assume

behind the shocks are also
with time, pl, ul, pl,

are therefore constants.

p(x,t) = pl for IIx < v8t (334

where Vs is the shock speed. Proposition (3) states that

{

U1 for O<x<Vst
U(x,t) = 1 (33b)

-U1 for -Vst<x<o

As a consequence of this formula and proposition (4), the two contact
surfaces which separate the hot and cool gas must be traveling with the
veloci@ t.ul,respectively. (See fig. 2.) Proposition (5) then
requires that

{

T1
T(x,t) =

!&

for ult< lx

for
[1
x < Ult

where W is to be taken as a temperature tending
sition (6) requires that

{

P1
p(x,t) =

@

for ult <

IIforx<

Hx
Ult

where @ is tobe taken as a density tending
Pa

that pW=R.

< v8t1 (33f=)

to infinity. Propo-

< vBt

1

(33d

to zero in such a mmner

?

It is clear that this solution satisfies a12 the conservation laws
for ~ shock strength at any point in the flow field except perhaps at
x= o. For, if the flow field in the region x >0 at any instant t
is considered, it consists of a shock wave at x = Vst, followed by a

flow with uniform pressure and velocity consistent with the shock rela-
tions, and a contact surface at x = u~%, which moves with the fluid
velocity. Such a flow field certainly satisfies all the conservation
laws in the region x >0. Hence, what must be examined is the question
of whether the conservation theorems are also satisfied at x = O. If
they are satisfied there, then the conservation theorems for the system
as a whole (i.e., over-all balance) will.also be satisfied and the .—
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converse is also true. It is precisely
mines the strength of the shock wave.

this consideration

●

NACA TN3411

that deter-

Take a control surface consisting of the planes x = e, x = -e, .
and the segment of the wall of the tube between them. The conclusion
will be the same whether e is chosen to be an arbitrarily small number
or a number hrge enough to include the entire disturbed field. It is
found that the equations representing the conservation of mass and
momentum are always identically satisfied no matter what is the shock
strength, while the energy equation is satisfied if and only if the
strength of the shock waves is such that the following condition

(*)

,is fuEilled. These statements can be proved easily if e is chosen to
be less than Vst. When e is taken to be larger than Vst the calcu-
lation is more involved, since use has to be made of the shock relations.
It will be shown how the calculation proceeds for this more involved
case (which incidently establishes the conservation laws for the system
as a whole).

Take e to be some fixed number greater than Vst. Then at time t
the shock waves will be at x = Vst and the contact surfaces, at x = ult
(see fig. 3). The total mass inside the control surface consists of three
parts: That between the two contact surfaces 2u1tA&, which is negligible
since @ tends to zero eventually, that between the contact surface and
the shockwave preceding it 2(Vst - u~t)Apl, and that between the shock
wave and the boundary of the control surface 2(C - Vst)Apo. Thus, the
total mass inside the control surface is ‘-

—

2u1At@+ 2(Vst - ult)Apl+ 2(G - Vst)Apo = 2u1At@+ 2eA~

where use has been made of the shock relation

Pl(% - Ul) = Povs (35)

(i.e., the continuity equation at the shock). Now, since & is actually
zero, the total mass contained in the control surface is invariant with
time for all.values of t and is equal to 2eApo~ the mass contained

.

.

inside the control surface before heat is released to the medium. This
demonstrates that the mass is conserved.

.

.
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The momentum equation, being a vector equation, is automatically
satisfied by virtue of the symmetry of flow with respect to the
plane x = O. Then consider the energy balance.

At the instant t, the energy inside the control surface also
consists of three parts. It is given by

2u@p*(~w+ 2)+2(!@- ) ( 2)++ U1 ult Apl ~T1 + $ U1

(2e - Vst)APOCVTO = “+ PlultA +

z~vs P.(%TI + ~ U12 - %To)

since @ tends to zero in such a manner

2eApocvTo +

that PWW = pi/R. Again use

has been made of the continuity equation at the shock (35}. The

(
term VsPo CvTl + * U12 - ~To) can be convertid into p~ul if one

makes use of the shock relations

which are nothing
the shock. Thus,
at the instant t

2— plultA
7-1

but
the
is

C-@ - To) = Vsw - *

PI - Po = pov6u~

U12 (36)

(37)

the energy, mcauentum,and continui~ equations at
total ener~ contained inside the control surface
given by

+ 2EApoc#o + 2tAPlul = 2eApo~To + * Plul~

The increase of energy in the control surface frmn the instant t to
the instant t + bt is therefore (27/7 - 1)plulMt where ZYt is

chosen so small that Vs(t + M) is still less than e. But the teal
amount of heat releasd in time t is @t. Consequently, the ener~

will be conserved if and only if
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which proves equation (~) .

One is now in a position to rehte the shock strength with the rate
of heat released per unit area ~. It is well Wmwn that the drift

velocity U1 producedby a shock wave of strength P1/Po is .

(38)

Substituting equation (38) into equation (34), the following relation is
found between the stren@h of the shockwave generated and the parameter
of rate of heat release ~/a@o:

(59)

One can then solve the quartic equation for pI/po in te- of ~/a&o.

A plot of pI/po versus ~/a&. fS given in f@re 4. ~~~~~ ~fs

curve has been constructed by finding the values of ~/~po for a
sequence of values of pI/po. The results of this calculation are pre-

sented in the following table:

2 7.34 g 152.p
4 31.8 290.9
6 65.2 ~o 1,867
8 105.7

It
of

is interesting
the shock wave

that for a very high rate of heat release the strength
varies with qJaoFO according to a two-thirds law:

P1 ~ 2/3

()
— = 0.325 ~
Po

(40)

.

.

.

.
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(The coefficient 0.325 corresponds to a value of 7 of 1.4.) Once
pl/po is lamwn as a function of ~/a&o, the complete flow field is
defined and given by equation (53).

Application of the foregoing results to the a~roximate estimation
of pressure waves generated by autoi~ition of a mixture in a tube is
discussed in the section entitled “SOME APIZCCATIONS OF ‘THEORY.”

TEREZ-DIMENSIONAL THEORY

Ih the presat section, the linearized theory of pressure waves
generated by heat addition in three dimensions will first be discussed
briefly. Then the construction of an exact solution in three dimensions
which may be useful in predicting the asymptotic strength of the shock
wave generated by a closed flsme front expanding uniformly will be
discussed.

According to the linearized theory, the differential equation
governing the pressure field due to a moderate rat-eof heat release is
given.by equation (8). The solution of equation (8) in an open space.
is well lmown:

.

‘fwhere r’ = x - E)%.(y-&+(z- !)2 is the distance between the
field point x,y,z) and the source point (~,~,~).

The special case in which heat is released at a given point in
space, say the origin of the coordinate system, is of particular interest.
This means that

q(x,y,z,t) =

where b(x,y,z) is the ~-function
as e-o, of the function

5(x,y,z) =

“o

Q(t)8(x,y,z) (42)

and can be considered as the limlt,

for ~+$+z2>e2

for ~+#+z2<e2
(43)
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The function Q(t) has the physical
release per unit time. Substituting
and evaluating the integral,

bp(x,y,z,t) _ 1
no 4m02

significance of being the heat
equations (43) into equation (41j

●

—

.

(44)

where r is the distance JX2 + yz + %@.

A comparison of equations (21) and (~) shows that one of the
essential differences between the one-dimensional and three-dimensional
cases is that the pressure waves generated in the former case depend on
the rate of heat release (per unit area) @ile those generated in the
latter case depend upon the time rate of change of rate of heat release. .

In practice, it is of sane interest to know the pressure and
velocity fields produced %y the sudden addition of a finite amount of
heat into the medium. Thus, the flow field produced by a spark discharge
is of this nature, although actualdy a linearized theory will not be
adequate to describe this phenomenon with precision. Assume the varia-
tion of rate of heat release with time as shown in figure 5. In other .
words, at t = 0+, the rate of heat release Q(t) increases suddenly
from zero to a very high value and then decreases again to zero in a
short interval of time. The pressure waves generated, according to .—

equation (44), will v@y with the derivative of Q(t) and will there-
fore consist of a very steep compression front followed immediatelyby
an expansion-compression zone (fig. 6). The velocity field produced
may be calculated from equation (5). The distribution of velocity field
along any radial line is

[1_l lQ(t -*)+ 1 laQ(t-&)

‘r 4flr2 ~To ‘Zao r bt $~o
(45)

Thus, the velocity distribution in the immediate neighborhood of the
origin behaves like an incompressible source field. Moreover, the
radial distribution of the velocity there varies L&e Q (near field in
fig. 6), while that at a large distance away bears the same relationship
with the pressure as that existing in the theory of plane wave (far field
in fig. 6).

Next examine the possibility of constructing an exact solution in
three dimensions as was done before in one dimension. l?lrst,consider
the case in which heat is released at a uniform rate of ~ units of
energy per second at the origin. As in the preceding section, the
undisturbed medium can be characterized by its pressure P. @ v@lOCitY

.

.
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of sound ao. Then the strength of the shock
in terms of the pressure ratio pl/po across

general, be a function of ~, ao, PO, and

PI
—= F(~jao~Po)t)
PO

Now the four variables Q, ao, PO, and t

wave generated,
the shock wave,

29

measured
till, in

time t. That is,

(46a)

can only be combined into

a single nondimensional parcuwter &/’ao3pot2. Since equation (46a) must
be dimensionally correct, one has

(46b)

Consequently, in this case the shock strength must he a function of
“time - a fact which complicates greatly the construction of an exact
solution. Stnce it is physically apparent that increasing the rate of
heat release will increase the strength of the shockwave generated, it
is concluded from equation.(46b) that the shockwave generated must
decay with time. A little reflection reveals immediately that the basic
reason why the shock strength should depend on t is the existence of a

r

~ in the problem.characteristic time It is also clear immediately
%3P0

that in order to prcduce a shockwave whose strength is invsriant with
time one must add heat to the medium according to the law

Q(t) = ut2 (47)

where a now has the dimension ener~/tim@. For, in this case, the
rate at which heat is released till be characterized by a and the shock
strength pl/po should be a function of u, aoj Poj and t instead.
But the four variables a, ao, PO, and t can only be ccmibinedinto a

hsingle nondimensional parsmeter a 03P0 which does not contain t.
Consequently, the shock strength p~po

/$
willbe a function of a oao3

but not of’ t; that is,

q

Po
()

=F~ (48)
a. po

The construction of an exact solution will be attempted for this case.
The “parabolic law” (equation (47)) is actually of some practical titerest.
Thus, if a spherical flame propagates into the fresh gaq with a constant
speed, the rate of heat generated by cc%ibustionis proportional to t2,
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Moreover, if the flame speed is small, the heat may be thought of as
being released at the center of the sphere.

For the present case, the pressure, velocity, density, and temper-
ature field must ‘bea function of a, ao~ Po~ r> ~d ** Jizstas in

the derivation of equation (32), a dimensimal reascming leads to the
result

(49a)

(kgb)

and so forth, so that the flow field is again conical. It is also known
that there must be a spherical contact surface behind the shock wave
which separates the heated gas (i.e., the ‘tfireball’~)from the cool gas
surrounding it. Tf the position of this spherical contact surface at
any instant t is denoted by its radius rc, then, in general,

rc = G@,ao,po,t~. In nondimensional form, this equation can be
written as

r=
—= ()G+
aot .%)%0

(50)

so that the contact surface
the fireball must expand at
outside the contact-surface

a solid sphere expanding at

must move out with a uniform velocity, or
a uniform rate. Consequently, the flow field
willbe exactly the ssme as that producedby

a uniform rate of aoG(+) But the air
Yo”po/

waves generated by a uniformly expanding sphere have been solved by
Taylor (ref. 5)4 so that the shock strength will be determined as soon
as the rate of’expansion of the fireball is related with the nondi-
mensional heat-release parameter alaJpo. To find this relation it is
necessary to construct first a solution which is valid inside the
fireball.

.

.

Except at the origin r = O where heat is released, the fundamental . .
hydrodynamic equations governing the flow inside the fireball are

%2n fact, the dependence of pressure and velocity field on r and
t in Taylor’s solution satisfies precisely requirement (49).

.
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(m)

(51~)

P = pRT (51-d)

Just as in the precedtng section, it is expected that the temperature T
in the fireball-tends
tends to zero in such

If this assumption is

t: infini~, while tie density p of th gas there
a manner that

pT = p/R (52)

made, then continuity eqution (51a) is automati-
cally satisfied provided that ur is finite. The nmmentumequation (511)
will then be satisfied if p is independent of r. But according to
equation (@a), if p is independent of r it must also be independent
of t. Hence,-it is assumed &at

P

where pc is the pressure at the

‘c the energy eqPT=? uation will

a function of t only. To satisfy
Ur= (Constant)t2/r2.- In fact, if-
surface,

% ()%2—=—
%r

= Pc

contact surface. FinalJy, since

be satisfied provided that r’ur is

equation (49b), it is necessary that

~ is the velocity of the contact

far r>O

because, at r =

is indeed finite

r = o.

Summarizing
iS giVeIlby

rc (= ~t), Ur must be equal to ~. (Note that ur

for all values of r > 0.) ~ symmetry, Ur = O at

the results, the flow field inside the contact surface

P= Pc (53a)



32

% ()tuc 2
—=— far r>O
%r

I

(53b)

Ur =Oatr=O

T.=~ (53C)

P ‘P (53d)

where H tends to ~ and @ tends to zero in such a manner than

m = Pl@ (54)

Note that inside the fireball the veloci~ distribution is like an incom -”-
pressible source field (just as that indicated by the linearized solution,
eq. (45)).

Up to now, the conservation laws have been satisfied at au points
inside and outstde of the fireball, except at the point r = O itself.
An examination of the conservation laws at this point will enable one to
relate the veloci~ of expansion of the fireball ~ and the pressure ._

in the fireball PC” with the heat-release pmameter a (see eq. (55)).

If Uc is assumed to be l.mownfor the time being, Taylor’s solution will —

then give the shock strength p@. and the flow field outside the fire- -

bsU as well as the value of PC. It will be shown that the correctly

assumed ~ must be that which yields a PC consistent with equa-

tion (55).

Consider a spherical control surface of radius e about the origin.
Take e so small that the contiol surface Ees completely inside the
fireball.”“The continuity and energy equations formulated for this control
surface are:

.

.

-1
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The first equation is automatically satisfied since @ ultimately tends
to zero. The second equation can be rewritten as

so that it will be satisfied if and only if

4RY ~c%3 = a

7-1
(55)

Finally, the mcmentum equation is automatically satisfied by virtue of
symmetry. Consequently, all the conservation laws are satisfied every-
where provided that the flow field outside the fireball is described by
Taylor’s solution, that inside the fireball, by equaticm (53), and equa-
tion (55) is satisfied. It is often more convenient to use the nondi-

mensional form
*=x5)(5r ‘f ‘qu’im ‘55)”

me table below is essentially a reproduction (In the notation of
the present paper) of table I of Taylor’s paper (ref. 5), except that one
more column (the last column) has been added to give the corresponding
values of afio3po in accordance with equation (55). Ih the table &
is the Wch nuniberof the contact surface and rl is the radius of the

shock wave. Other notations have already been intrciiucedearlier.

Q @ CD @ @ @ a
% rl PI ‘c PI Pc

~ z ~ ~ ~ *

o ----- ------ ----- ----- ------ 0
.2 4.93 1.000 O:hq: 0.928 l.o~
.4 2.44

.392
1.003 1.295 ;.~

.5 1.950 1.Q50 .523 :To 1.400

.6 I.763 I.169 .638 .749 1.569 17:74

.7 1.503 1.365 .761 ● 755 1.808 3$;

.8 1.392 L 629 .8gl .774 2.105
1.0 1.256 2.4oo 1.180 .8KL 2.959 212.
1.2 L 182 3.59 1.520 .847 :.~o 651
1.4 1.135 5.60 1.953 .887 2,050
1.6 1.103 9.06 2.560 .917 9:89 7,230
1.8 I.083 17.95 3.598 .g2 19.7 40,000
2.1 1.060 - m .93 m m
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Column @ of the table gives the heat-release parameter, while .

column @ gives the strength of the shockwave produced. The dependence
of the shock strength on the heat-release pnxuneter

—
a\ao3po is also

shown in figure 7. Column @ of the table gives the velocity of expan-
.

sion of the fireball relative to the sound speed in the undisturbed
medium. Column @ gives the pressure inside the fireball. Column @
gives the ratio of the radii of the spherical shock and the fireball.

SOME APPLZC!ATIONSOF THEORY

Consider first some possible applications of equation (39). It is
clear that in practice there are cases in which heat is released at a
uniform rate in a limited region (or a narrow band) of a tube. H the
axial dimension of this region is small c~pared with the length of the
tube, equation (39) wouli.be expected to give approximately the correct
strength of the shock wave produced by the heat released. If the tube
is of infinite length then equation (39) would be expected to give the
asymptotic value of the strength of the shock wave developed, whatever
is the size of the region at which heat is actually released (provided
that tiis region--isfinite). A similar idea applies to sane ignition .
problems. Consider a tube of infinite length containing some combustible

-.

mixture. Suppose..tit at t = O, for one cause or another, ignition
begins at one section, say at x = 0, of the turn. ~US, the ~xt~e .

may have been ignited %y a hot surface or a grid, or automatically because
of the existence of a local high-temperature region. A flame is devel~ed
and the combustion will tend to spread out into the fresh gas (see fig. 8).
If the flame spreads out at a uniform rate, the total amount of heat
generated as the”result of cofiustion will be linearly proportional to
time t and the rate of heat release is therefore constant. Furthermore,
if the flame spreads out at not too high a speed, compared with the
velocity of sound in the surrounding medium, the strength of the shock
wave generated would be expected to be approximately the same as if heat
had been released at a constant rate at the section x = O. In fact, one
can calculate the strength of the -shockwaves generated. Thus, su~osing
that the two flame fronts propagate away from the ignition plane x = O
with a constant speed St, (the transfor~tfon velocitY)~ the total mount

of heat generated in time t is 2~1StA~t where pl is the density of

the medium ~ehind the shock waves, A is the cross-sectional area of the
tube, and Q is the heating value of the .@.xture(in ener~ per unit
mass). It follows therefore that the rate of heat release per unit area
is constant and given by

% = 2P@@ (56) .F

.
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and the strength
equation (39)

where PI-

*

of the shock wave generated can be solved from.

%11(m—. —.
-lPCI o

&
—.+ti

PO 7+1

2

is related to p~po by the Rankine-Hizgoniotrelation

(57)

~+y+l%
P1 Y- 1 Po
—=
Po 7+1+2

7-1 Po

Naturally, one llkes to bow if this gives the correct answer. Fortu-
nately, in the present case there is an independent method of calculating
the strength of the shockwaves generaM. Note that since the flow field
must be symmetric about the plane. x = O, the same flow field would have
been produced if the tube had been closed off at x = o (fig. 9). Now
a fbne propagating awqr from the end of a tube must generate a shock
wave of such a stren@h that the boundary condition at x = O is satis-
fied. Let the shockwave have the strength pl~o where pl is the
pressure immediately behind the shock. !lheshock will then induce a
flow giving rise to a &ift veloci~ (fig. 10)

~Q )
a. 1 ~——-

“=*

(58)

where a. is the veloci~ of sound in the medium ahead of the shock
wave. Since the flame is assmed to be propagating with a constsmt
speed St relative to the medium, it will be seen to propagati wtth

an appsrent speed of U1 + St. Now the flame itself induces a flow

behind it. From the viewpoint of an observer rtding on the flame, the

burned gas is leaving the flame with a velocity equal to ‘1 whereSt ~

pl is the density of the gas ahead of the flsme.(i.e., that behind the

shock wave) and @ is that behind the flame. Hence, frcm the viewpoint

of an observer in the MbOratory (i.e., one who is fixed with respect to
the undisturbed mediuruahead of the shock waves), the burned gas willbe
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PI
meting away from the wall x = O with a speed equal to u~ + St - St —. -

%2
But the
flow at

U1 + St

boundsry condition at the wall dictates that the velocity of the .
the fixed wall is zero. This condition is satisfied if

()qU1 .st_-l
%

(59)

. ..

which together with equation (59) determines the shock strength since
PI/@ is a fixed ratio once the mbcture is specified. Now, if U1 iS—
sI&l.iCoqared with
the flame, a simple

to the result5

the velocity of sound al in the medium ahead of
consideration of momentum balance at the flsme leads

l?l= Pa (60)

Hence> by the gas law, Pi/m = T2/~, and_equation (59) becomes

()

T2
U1

‘st~-
1

But consideration of energy balance at the flaiiefront shows that

~ = %(T2 - Tl) (62)

.

(61)

St
provided that —<< 1. Hence, equation

al

Substituting equation (63) into equation
law, it is found that the shock strength
equation

(61) can be written simp~ as

(63)

(58) and making use of the gas

P~/Po must satis~ the

ti-” w -1,
7

‘1” F*

(64)

%’or proof of”eqs. (60) and (62), see, e.g., ref. 6 or 7.
.



NACA TN Xll 37

. which after some simple reductions beccmes identical to equation (57).
Thus, it is seen that equation (57) indeed gives the correct value of
the strength of the shock wave generated by cmnbustion. The fact that
in this case the shock strength can be predicted exactly by another
method has not made the usefulness of equation (39) less, for, in the
first place, it has strengthened confidence in its application to
practical problems, and, secondly, equation (39) can be applied to many
other cases (some of which have been mentioned at the beginning of this
section) where no other simple meahs is avai~ble for estimating the
approximate strength of the shock wave produced. Finally, the corre-
sponding problem in three dimensions cam be solved by the theory
develaped in the last section.

MLrels suggested tihatthe condition under which the pressure wave
produced by flame propagation can be found by considering an equal rate
of heat release at a fixed station be considered. He noted that the
equivalence of these two approaches is indicated for the planar case
but is asswned for the three-dimensional case. (See the statement after
equation (48]: “E the flame speed is small, the heat may be thought
of as being released at the center of the sphere.”)

.

.

= response to Ws suggestion, the author would like to add that
before any comparison can be made for the three-dimensional case the
exact solution for the flow field generated by a uniformly expanding
spherical flame must be known. This solution can, in fact, be constructed.
It may be worth while to point out that, depending on the values of the
flame speed and the heating value of the mixture, the flow field may
assume qualitatively different natures. When the flame speed and heating
value of the mixture are low enough (the present case), the flow field
outside the flame front is similar to that generakd by a uniformly
~~g s@eres the speed of e-ion of which is related to the flsme
speed and the heating value of the mixture. Inside the spherical flame
the medium is at rest. When the flame speed and heating value of the
mixture are high enough, the flow field inside the spherical flame is no
longer entire3y at rest. There is now a family of central-expansion
spherical waves following immediately &hifi the flare front which is
nw propagating at the luwer Chapnan-Jouguet speed. The flow field
outside of tie flame front is still similar to that generated by a
uniformly expsxding sphere. When the flsme speed and heating value
the mixture are extremely high, the flame frent catches up with the
wave to form a detonation front right after the mixture is ignited.
last case has been analyzed by Taylor (ref. 8) and independently by
Doerlng and Burkhardt (ref. 9). However, all these exact solutions

of
shock
This -

cannot be given in closed analytic forms ~ich involve only the elemen-
tary trsmscendental functions. When the flsne speed is small, the shock
wave generated by the flane is extremely weak, mainly because of the.
fact that the shock wave is propagating into an open space. On the other
hand, the equivalence of the flow field produced by the flame and a heat
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the flame speed is small. Consequently, it does
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rate is true only when
not seem worth while

from the practical point of view to look into this particular example
in any @eater detail.

When he was commenting on the equivalence of a flsme front end a
heater, the following argument was also advanced by Mirels: It can be
shown for the planar case that the equivalence of the two approaches
requires that the ratio of specific heats be the same for the burned
and unburned gases and that the kinetic-energy terms be negligible. %ake
the case of a flame originating at x = O at time t = O. The tx-diagrsm
is indicated in figure IL(a). The equivalent problem, with heat addition
at section x = O, is indicated in figure Xl(b). Conditions in region (1)
of the figures are the same for both cases but conditions in region (2)
differ. Ihtidition, the extent of region (2) is greater in figure n(a)
than in figure n(b) since the flame moves faster than does the contact
surface. However, the energy per unit volume of the gas behind the shock
(for agiven shock strength) can be shown to be the same fw regions (1)
and (2) and for figures n(a) and n(b). Neglecting kinetic energy, the
energy per unit volume is

.

PE=pCvT=~

Since p is constant behind the shock, the energy per unit volume is
constant provided 7 is the same for the burned and unburned gaSes.
Therefore the det%.ilsof the temperature and density distributions
behind the shock are unimportant. The strength of the shock depends on
the rate of heat addition and the two approaches are equivalent.

With regard to this discussion, the fact that a flame front and a
heating e~nt are dynamical~ equivalent when the ratio of specific
heats is the same for the burned and unburned gases and when the flame
speed is small compared with the local sound speed was independently
found by%he author in his study of the mechanism of generation of pres-
sure waves at a flame front (ref. 10). Actually, the statement is rigor-

.—

ously true only if there is a current of flow t&o@ the heatfig el~~t
with velocity equal to the flame speed. The rigorous demonstration will
not be presented here.

—

.

%hen the pressure and velocity fields produced in two systems are
identical, the systems are said to be “dynamically equivalent.” Note

.

that the temperature and density fields produced in the two systems need
not be the same. .



NACA TN 3411 39

CONCLUDING REMARKS

When the effect of heat conductivity is neglected, the flow field
resulting frcm the addition of heat into a medium is caused by the
volumetric expansion of the heated gas. When the rate of heat release
is mcxlerate,a “reduction theorem” can be derived which reduces ttk
problem of heat addition in a single plane in a tube of constant cross
section to a problem of piston motion in the ttie (the plane of heat
addition being perpendicular to the tube axis). The fictitious pistons
in the theorem correspond in reality to the interfaces which separate
the heated and unheated gases. The solution for the more general case
of heat addition in a region inside the tube can be constructed by
superposition.

!!Theexact solution for the flow field produced by uniform heating
in a plane at a constant rate is also given. In particular, the strength
of the shock waves resulting frcm such heating is calculated in terms of
the (constant) rate of heat release. The formula also gives the asymp-
totic strength of the shockwaves resulting fran heating at a constant
rate a fitite volume of gaseous medium inside em infinitely long tube of
cons+ant cross section.

When the heat is added into the medium at a single point at a rate
proportional to the time squared, the heated gas expands at a umiform
rate, much like a biformly expanding sphere. Taylor’s solution enables
one to calculate the relation between the shock wave produced and the
rate of heat release. This relation also represents asymptotically the
strength of a pressure wave generated by a closed flame front in a
combustible mixture expanding uniformly at a constant speed which is
small compared with the local sound speed.

The Johns Hopkins University,
Baltimore, Mi., December 11, 1953.
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Figure 7.- Rate of heat relesse of a spark.
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Figure 8.- Pressure waves generated as a result of ignition of a mixture
in a tube.

Figure 9.- Ignition of a mixture at a closed end of a tube.

Figure 10.- Verification of equation (57) for a

-G

psxticukr case.

.

.

.

4



NACA TN %11 47

.

.

t Ii Region (2) Flame

U2=0

P2

P2

T2
Shock

>
x

(a) Fl= propagati% in tube.
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(b) Heat silditionat section x = O.

Figure 1-1.- Case of flame orig~ttig at x = O and t = O.
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